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Following a review of the difficulties associated with the measurement and inter- 
pretation of statistics of the small-scale motion, the evidence for and against local 
isotropy is assessed in the light of measurements in a turbulent plane jet a t  moderate 
values of the Reynolds and PBclet numbers. These measurements include spatial 
derivatives with respect to different spatial directions of the longitudinal velocity 
fluctuation and of the temperature fluctuation. Relations between mean-square 
values of these derivatives suggest strong departures from local isotropy for both 
velocity and temperature. In contrast, the locally isotropic forms of the vorticity and 
temperature dissipation budgets are approximately satisfied. Possible contamination 
of the fine-scale measurements by the anisotropic large-scale motion is assessed in 
the context of the measured structure functions of temperature and of the measured 
skewness of the streamwise derivative of temperature. Structure functions are, within 
the framework of local isotropy, consistent with the average frequency and amplitude 
of temperature signatures that characterize the quasi-organized large-scale motion. 
Conditional averages associated with this motion account, in an approximate way, 
for the skewness of the temperature derivative but make negligible contributions to 
the skewness of velocity derivatives. The degree of spatial organization of the fine 
structure is inferred from conditional statistics of temperature derivatives. 

1. Introduction 
The concept of local isotropy is important to the theory of turbulence since its 

validity implies a certain universality of the small-scale motion or fine structure. 
From a practical point of view, the importance of the concept cannot be over- 
emphasized since its use leads to a significant simplification of expressions for E and 
C8, respectively the average dissipations for the turbulent kinetic energy and half the 
temperature variance. Since Kolmogorov’s ( 1941 a) local-similarity theory, the 
increase in the intermittency of the fine structure with an increase in the turbulent 
Reynolds number R, has received a great deal of attention, both experimentally and 
theoretically (e.g. chapter 8 of Monin t Yaglom 1975). Although the expectation of 
local isotropy is strictly associated with sufficiently large, preferably atmospheric, 
values of Rh and of the turbulent PQclet number Pe, several statistics of small-scale 
turbulence at atmospheric Reynolds number have, apparently, not indicated a 
decrease in the departure from local isotropy (e.g. Gibson, Friehe 6 McConnelll977). 
This trend suggests an obvious but important question: Why and how does 
anisotropy, which is observed at laboratory Reynolds numbers, persist at atmospheric 
Reynolds numbers ? Progress in answering this question has been hampered by the 
ambiguity in interpreting the fine-scale measurements in the context of isotropy. 
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Source References 
(a)  Inadequate spatial resolution 

of sensors 

( b )  Non-convergence of tails of p.d.f.s 

(c) Non-convergence of tails of 

( d )  Inadequate averaging time 

(e) Poor signal/noise ratio 
(f) Inadequate choice of cutoff 

spectra 

frequency of low-pass filter 

(9 )  Choice of appropriate convection 
velocity 

(h)  Errors associated with the use of 
parallel (hot or cold) wires 

Corrections for velocity : 
Wyngaard (1968, 1969) ; Schedvin, 
Stegen & Gibson (1974) 

Corrections for temperature: 
Wyngaard (1 97 1 a )  

Trnnekes & Wyngaard (1972) ; 
Frenkiel & Klebanoff (1975) 

Champagne (1978) 

Tennekes & Wyngaard (1972) ; 

Trnnekes & Wyngaard (1972) 
Kuo & Corrsin (1971); Champagne (1978); 
($agne & Hopfinger (1979) ; 
Antonia et al. (1982) 

velocity - Lumley (1965) ; Heskestad (1965) ; 
temperature - Wyngaard & Clifford (1977) ; 
(‘hampagne et al. (1977) 

Tavoularis & Corrsin (1981) ; Brown et a?. (1983a, a); 
Antonia et al. (1984, 1985) 

Antonia et al. (1982) 

Corrections to Taylor’s hypothesis: 

Wyngaard (1969) ; Mestayer & Chambaud (1969) ; 

TABLE 1. Possible sources of error in fine-scale measurements 

Possible factors that have contributed to this ambiguity are (not necessarily in order 
of importance) : 

(i) uncertainties in measured statistics of velocity and temperature derivatives; 
(ii) the different sensitivities of various tests of local isotropy; 
(iii) difficulties in devising appropriate guidelines for comparing velocity and 

(iv) the likely contamination of the fine structure by the relatively organized and 

Each of these factors is briefly discussed below. 
(i) Possible sources of systematic error in measurements. Most of these are well known 

and are listed in table 1 with appropriate references. We concentrate here on (9)  since 
the verification of Taylor’s hypothesis (e.g. ul, = ( -  ul)-l ul, t ,  where ul is the mean 
velocity in the x1 direction, ul, = au,/azl and ul, = au,/at) is implicit in most local 
isotropy tests that are available in the literature. Corrections to this hypothesis were 
developed by Lumley (1965) and Hwkestad (1965) to account for the effect of a 
fluctuating velocity field and have, for example, been applied by Champagne (1978) 
to fine-scale velocity measurements. Corrections analogous to those of Lumley and 
Heskestad were proposed by Wyngaard & Clifford (1977) and Champagne et al. (1977) 
for the temperature field. Antonia, Phan-Thien & Chambers (1980) calculated the 
probability density function (p.d.f.) of temporal velocity and temperature derivatives 
for two choices of the fluctuating convection velocity and an assumed Gaussian p.d.f. 
of the spatial derivatives. The calculations led to corrections that were in the opposite 
direction to those that were proposed on the basis of the equations of motion but 
with the use of a number of untested assumptions. Antonia et al. (1980) noted in 

temperature fields ; 

anisotropic large-scale motion. 
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particular that the assumed independence between small and large scales needed 
verification. 

A more direct approach, although not without complications, for assessing Taylor’s 
hypothesis is to measure the streamwise spatial derivative simultaneously with the 
temporal derivative. This approach is feasible in the case of temperature derivatives. 
Browne, Antonia & Rajagopalan ( 1 9 8 3 ~ )  found that both p.d.f.s and spectra of 0,1, 
obtained on the centreline of a plane jet, were in reasonable agreement with those 
of either 0, or U;’ 0, t .  Also p.d.f.s and spectra of spatial temperature increments, 
for separations extending to about 137 (7 is the Kolmogorov lengthscale v i /&) ,  were 
in reasonable agreement with those for temporal temperature increments when 
Taylor’s hypothesis was used. Browne et al. ( 1 9 8 3 ~ )  used the isotropic value of Z, viz 
Z = 15v$,’, to estimate 7. Although the use of isotropy may seem prejudicial, it is 
unlikely, in view of the exponent of 2 in the relation 7 = d/d,  that the estimate of 
7 was in error. It is also possible that Z x l b q ,  may be a reasonable approximation 
despite the fact that individual terms of E do not satisfy isotropy. 

Although the result of Browne et al. was obtained only at the jet centreline and 
needs to be extended to other positions in the flow (as well as to other flows), we have 
preferred for the present work to lean towards the experimental evidence, limited as 
it may be, rather than the available, theoretically based, corrections. Consequently, 
we have used Taylor’s hypothesis consistently in the present paper. 

In  the light of table 1 ,  the prospect of obtaining accurate he-scale measurements 
may seem rather daunting. In  this context, it is pertinent to note that the possibility 
of using numerical simulations (e.g. Kerr 1985), albeit at small Reynolds numbers, 
for comparison with he-scale measurements seems promising. 

(ii) Local isotropy tests with different degrees of sensitivity. Tests can take the form 
of relationships between moments of velocity of temperature derivatives, relationships 
between spectra of different velocity or temperature derivatives, or between structure 
functions of velocity or temperature. Tests can also be applied at different levels in 
the sense that attention may be focused on a particular range of lengthscales or a 
particular range of frequencies. For example, a second-order derivative would give 
more weight to the higher-wavenumber end of the spectrum than the first-order 
derivative. Tests involving spectra or structure functions can be applied in the inertial 
range, if such a range exists, or in the viscous range or in both these ranges. Bradshaw 
(1967, 1969) suggested that the existence of an inertial subrange in turbulent flow 
may be compatible with the hypothesis of second-classi isotropy and that this 
hypothesis provides a useful way of determining S at least for sufficiently large 
Reynolds numbers (e.g. Lawn 1971). Champagne, Harris t Corrsin (1970) concluded 
that the Kolmogorov ‘ -!j’ law, even with proper component spectral magnitudes, 
is a relatively insensitive indicator of local isotropy. A similar sentiment was 
expressed, in slightly stronger terms, by Mestayer (1982). It should also be noted that 
different ‘order’ tests exist. For the velocity field, relationships between spectra of 
different velocity components may be thought to represent a test at the lowest order. 
A higher-order test would involve the spectral relationship between derivatives in 
the three spatial directions of the longitudinal velocity component. Note also that 
the spectral relationship between the three derivatives of the temperature fluctuation 
has been described as a ‘second-order’ test (Van Atta 1977a). It is clear from the 

t The term ‘second-class isotropy’, aa coined by Bradshaw (1967), implies a relaxation of the 
full requirements of local isotropy in that intensity spectra may satisfy local isotropy even though 
the shear-stress and heat-flux spectra do not. 
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previous remarks that many tests are available for testing local isotropy and that 
an appropriate choice is unlikely to be straightforward. Pragmatically, the appropriate 
test should perhaps fit the particular application: for example, when considering the 
budget of the temperature variance, it would help to know the magnitude of the 
departure from isotropy of the mean-square temperature derivatives. 

(iii) Guidelinesfor velocity vs temperatwe. A direct comparison between velocity and 
temperature fields is not straightforward in view of the respective vector and scalar 
natures of these fields. A related difficulty is that of defining appropriate turbulent 
Reynolds and PBclet numbers. The use of ($)+ and of the Taylor microscales hul and 
A, in the definitions of R, (= ( $ ) i A u , / v )  and P e ( =  (q)ih,/a,  a is the thermal 
diffusivity) may be ambiguous when departures from isotropy are known to occur. 
Corrsin (1963) suggested that it would be more prudent to use an r.m.s. resultant 
velocity fluctuation and some sort of averaged microscale instead of ($)k and hul. 
Fulachier & Antonia (1983) also noted that the use of the fluctuating-velocity vector 
may provide a more meaningful comparison between turbulent Reynolds and PBclet 
numbers. 

In the absence of clear guidelines on how to compare fine-scale velocity and 
temperature fields appropriately, conclusions on the relative degree of isotropy of 
these fields can only be tentative. If it is argued that velocity is a forcing term in 
the transport equation for temperature, the anisotropy of the velocity field may be 
thought to influence the fine-scale temperature field. Mathematically, the comparison 
of relationships between mean-square velocity derivatives with those between mean- 
square temperature derivatives seem tenuous, since squared velocity derivatives 
are elements of tensors of rank 4 whereas squared temperature derivatives are 
elements of tensors of rank 2. Experimentally, considerable similarity may be 
observed between, for example, spectra of spatial derivatives ul, or ul, of velocity 
(Antonia, Browne & Chambers 1984) with corresponding spectra 8,1 or 8,2 for 
temperature (Antonia, Browne & Chambers 1985). 

In the light of the above comments and the remarks made in (ii), it is difficult to 
interpret claims in the literature that the fine-scale velocity field satisfies isotropy 
over a wider range of scales than the temperature. Mestayer (1982) concluded that 
in a relatively high R, (x  600) laboratory boundary layer, local isotropy for the 
velocity field extended to about 20.17 compared with only about 37 for the temperature 
field. Mestayer, Choller & Lesieur (1984) speculated that this difference may be 
consistent with the apparently different Reynolds-number evolutions of ‘ bumps ’ in 
velocity and temperature spectra at the high-wavenumber end of the inertial range, 
noting that semi-local interactions between different wavenumbers are more effective 
for temperature than velocity. Although this speculation may be reasonable, 
Mestayer’s (1982) conclusion can only be assessed properly when the degree of 
sensitivity of the tests that he applied can be appraised objectively. 

Although, as noted earlier, the existence of an inertial range may be, at best, only 
a moderate indicator of local isotropy, it is of interest to comment on the relative 
degrees of scatter in the inertial-range constants for velocity and temperature. In  a 
comprehensive review of published values for these constants, Yaglom (1981) found 
that the Kolmogorov constant for velocity shows significantly less scatter than the 
temperature constant. There is a possible explanation for the apparent disarray in 
reported values of the temperature constant. Accurate estimates of the inertial-range 
constants require an accurate estimate of 5,. A significant number of estimates of the 
inertial-range constants has been based on isotropic values of 5 and 2,. Although no 
rigorous experimental support is available, it is possible that the value 15vZ,, may 
be a reasonable approximation for 2. However, this does not necessarily imply that 
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the individual components of E satisfy local isotropy. On the contrary, there is 
- evidence (e.g. Wygnanski & Fiedler 1969) to suggest that the ratios g, l /2$, l  and 
ut, 2/2$, are smaller and greater respectively than the isotropic value of unity. There 
may thus be sufficient compensation between different components of E to validate 
the isotropic approximation for S .  In contrast, there is a large amount of data, 
obtained in different shear flows, indicating that the ratios87,/82, and 02.JOe1 9 ,  are both 
greater than unity. There is consequently no compensation in the full expression for 
€0 and isotropic values of Ze may seriously underestimate the average temperature 
dissipati0n.t 

(iv) Contamination by the large strmeture. The possibility that fine-scale measure- 
ments are contaminated by the anisotropy of the large-scale motion in non- 
homogeneous shear flows has been investigated by Gibson et al. (1977) and Sreeni- 
vasan, Antonia & Britz (1979). It would clearly be of interest to compare small-scale 
measurements in different non-homogeneous flows, preferably at the same R,, with 
different degrees of organization of the large-scale motion. A comparison with 
measurements in nearly homogeneous or nearly isotropic turbulence, where no 
organized motion is expected, should also be useful. 

In  view of all the above factors, but perhaps more specifically because of (i) and 
(iv), the need to document departures from local isotropy at laboratory values of R, 
seems important. The advantages of working in the atmosphere are well known: a 
large inertial range is possible and spatial resolution is not usually a problem since 
the Kolmogorov length 7 is of the order of 1 mm. A major disadvantage is that one 
forfeits control over experimental conditions and general experimental difficulties 
cannot be overlooked (e.g. C. A. Friehe 1983, private communication). It may also 
be more difficult to estimate effect (iv) accurately in the atmosphere than in the 
laboratory. Nelkin & Nakano (1984) stressed the importance of studying departures 
from local isotropy in the laboratory. Tavoularis & Corrsin (1981) provided this 
documentation with respect to moments of velocity and temperature derivatives in 
a quasi-homogeneous turbulent flow (R, x 260) with constant mean-velocity and 
-temperature gradients. In  the present paper we document, by paying particular 
attention to (i) and (iv), departures from isotropy for the fine-scale velocity and 
temperature fields in the self-preserving region of a turbulent plane jet. The accuracy 
of the fine-scale measurements is discussed in $2 and results for high-order moments 
of first-order derivatives of u1 and 8 are compared in $3 with those of Tavoularis & 
Corrsin (1981). Mean-square values of second-order derivatives are considered 
separately in $4 by using isotropic forms of the equations for the turbulent vorticity 
budget and the temperature dissipation. In $5,  several models for the possible 
contamination of the fine structure by the anisotropic large structure are assessed. 
The spatial organization of the fine structure is examined in $6 using conditional 
averages of an approximation to the temperature dissipation. We also attempt to 
discuss this organization in terms of the known topology of the flow. 

-- 

- 

2. Experimental details and accuracy of moments 
A description of the jet facility and general instrumentation is given in Antonia 

et al. (1983~).  We briefly recall here the experimental configurations and conditions 
that are relevant to the present measurements. The jet issues from a nozzle of width 
d = 12.7 mm and height 25 cm at a nominal jet exit velocity 5 of 9 m/s 

t A good est,imate of 8, can, in principle, be obtained as the difference in the budget of the 
temperature variance. Such an approach requires, however, that all other terms in the budget are 
obtained accurately. 
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( Uj d/v x 7550). All measurements were made at a distance x1 of 4Od from the nozzle 
after establishing that the flow was approximately self-preserving at x1 = 2Od. On 
the centreline (x, = 0), gl = Uo w 3.4 m/s, ( q ) f / U o  x 0.2 and RA w 160. For most 
measurements, the jet was heated at  a nominal nozzle-exit temperature of 25 "C 
above ambient. A t  x2 = 0, the local mean temperature To (at x2 = 0) was about 9 "C 
above ambient, (@)f/To w 0.16 and P e  z 94. The amount of heat used was sufficiently 
small for temperature to be considered a passive marker of the flow. Quantities such 
as the Reynolds shear stress were the same with as without heating, indicating that 
the dynamics of the flow were not influenced by the temperature field. The 
Kolmogorov microscale 7 was about 0.14 mm at  x2 = 0. The corresponding 
Kolmogorov frequency fK = U0/27r7 was approximately 3.8 kHz. The half-widths L, 
and L,, derived from mean-velocity and mean-temperature profiles respectively, 
were 0.6 m and 0.073 m. 

The results given in the next section are based on several types of measurements : 
(i) Two parallel hot wires (Pt-10 % Rh) were aligned in the z3 or spanwise direction 

and separated in the x2 or main shear direction. Each wire had a diameter of 1.3 pm 
and a length of 0.17 mm and was operated with a DISA 55M01 constant-temperature 
anemometer at  a resistance ratio of 1.8. The separation A&, = Ax2/7 (hereinafter the 
circumflex will denote normalization by 7) between the wires was varied in the range 
1.4-10. The flow was not heated for these measurements. 

(ii) Two parallel cold wires (0.63 pm, PklO % Rh) were aligned in the x3 direction 
and spaced in either the x1 or x2 direction. The wires were operated with a 
constant-current system supplying 0.1 mA to each wire. Wire lengths of 0.41 mm and 
0.32 mm were used. For the x1 separation (a detailed description of the experimental 
arrangement is given in Browne et al. 1983~)  the longer wire was placed upstream 
to avoid any possible interference with the other wire. For the x2 separation, the longer 
wire was fixed at x2 = 0 and the shorter wire traversed in the positive x ,  direction. 
The ranges of separation used were approximately 0 . 7 1 ~ 1 4 7  and 0.93~12.37  in the 
x1 and x2 directions respectively. 

(iii) Two parallel cold wires, each of length x 0.6 mm, were aligned in the x2 
direction, separated by a distance of 0.65 mm in the x3 direction and centrally located 
in a rake of cold wires. All wires in the rake were at the same x1 and x2 but at different 
x3 locations. The rake was moved to different values of 2,. A total of eight wires, 
including the parallel-wire pair, was used. Each wire (0.63 pm, Pt-lO% Rh) was 
operated at a current of 0.1 mA. The rake covered a spanwise separation of 0.9L,. 

(iv) A spanwise rake of cold wires was also used with an X-wire/cold-wire 
arrangement replacing the parallel wires in the centre of the rake. The X-wires 
(5 pm, P e l 0  yo Rh) were operated at an overheat of 0.8 with constant-temperature 
anemometers. The cold wire (0.63 pm, P&lO% Rh) was located about 0.5 mm 
upstream of the X-wires and operated in a constant-current (0.1 mA) circuit. The rake 
covered a spanwise separation of 1.O6Lu. 

(v) Measurements at x2 = 0 of u1 and 8. Two wires, one hot (Pt, 2.5 pm, 0.37 mm 
length) and one cold (PklO% Rh, 0.63 pm, 0.32 mm length) were aligned in the x3 
direction and separated in the x, direction by about 0.5 mm. 

Signals from the hot or cold wires were first recorded on an eight-channel FM tape 
recorder at 381 mm/s and subsequently digitized on a PDP 11/34 computer. For the 
majority of experiments, the hot-wire signals were digitized at a sampling frequency 
f, of 7 kHz after low-pass filtering at a cutoff frequencyf, of 3.5 kHz. To determine 
f,, signals proportional to ul, and ul, , were obtained, with the hot wires at the exit 
plane of the jet, using an analog differentiator and an analog computer. Spectra 
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of these signals were obtained with a real-time spectrum analyser. These ‘noise’ 
spectra were stored and compared with the ‘signal ’ spectra obtained with the wires 
at  zl/d = 40. The frequency f, ( x  3.5 kHz) was identified with that at which the 
signal could no longer be clearly distinguished from the noise. A similar procedure 
was used on analog signals proportional to 8,1 and 8,2 to determine the cutoff 
frequency for temperature. In this case, f, was about 3.7 kHz and temperature or 
temperature-derivative signals were digitized at  a sampling frequency of 7.4 kHz. 
Signal-to-noise ratios for 8, and 8 were about 18 and 22 dB respectively, while 
corresponding ratios for ul, and ul! were almost equal ( x 24 dB). 

Although it would have been desirable to set f, a t  a somewhat larger value than 
the Kolmogorov frequency fK, the present value off, ( x fK),  dictated by signal/noise 
considerations, was estimated to be satisfactory for the present study. Antonia, 
Satyaprakash t Hussain (1982) estimated that the optimum setting for f, was about 
1.75 fK on the basis of data for ul, l. obtained on the centreline of plane and circular 
jets. However, the variation in statistics of ul, was relatively small once f, exceeded 
fK;  for example, the flatness factor of ul, 1, the highest-order moment of interest here, 
increased by about 7 % in the range 1 <fc/fK < 1.75. We also ascertained that the 
convergence of the tails of the present ul,l and 8,1 spectra was good. Although 
spectral closure for the derivatives of ul, l  and 8,1 was not complete (see $4), this 
discrepancy was not sufficiently large to affect the conclusions of $4. 

The analog signals ul, and ul, were not digitized; the actual hot-wire voltages 
were digitized and linearized on the computer. Time derivatives and differences of 
these linearized signals were formed on the computer. The analog signals 8,1 and 
8,2 were digitized along with the original cold-wire voltages from which they were 
derived. Statistics of 8, and 8, formed on the computer were in close agreement with 
those for the analog derivatives. 

There are many sources of error associated with the use of parallel wires for 
obtaining spatial derivatives. We briefly recall some of these (more details can be 
found in the references listed in table 1). 

(a)  Possible diferences in the time constants of the parallel wires and possible mismatch 
between frequency respmes of the parallel measuringpatb. The parallel cold wires used 
for measurements of types (ii) and (iii) had approximately the same time constant 
( - 3 dB frequency was estimated to be 4.8 kHz, k 5 %). The effect of the prong-wire 
interaction (Paranthoen, Petit t Lecordier 1982) on the low-frequency response of 
cold wires can be significant, especially when the length-to-diameter ratio decreases 
below about 1OOO. However, this effect is more likely to be important for temperature 
variance or flux measurements than for measurements which weight the high- 
frequency end of the spectrum, and corrections for this effect were not applied to 
the present data. Possible phase shifts between the parallel signal paths for both hot- 
and cold-wire measurements, including wires, cables, anemometers and filters, were 
not detected in cross-spectra of signals obtained for small separations between the 
wires. 

(b) Spatial-resolution limitutirms. These may be especially severe for measurements 
with parallel wires. As the distance between the wires decreases, the spatial resolution 
is expected to increase but this advantage is offset by the relatively large systematic 
errors that occur at small separations due to relatively small errors in static 
calibration. To avoid this latter difficulty, the separations between the wires should 
be increased but the attenuation in the high-frequency components of the signals 
must then be taken into account. A possible correction for the effect of separation 
on the difference between temperature or velocity signals was outlined by Antonia 
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et al. (1984, 1985). Their procedure consisted of extrapolating various statistics of 
these differences to zero separation, ignoring in this extrapolation data obtained at  
small separations. Spatial-resolution effects can also be caused by inadequate wire 
lengths. Corrections for hot and cold wires (table 1) were not applied since, for the 
majority of the present he-scale measurements, the wire lengths were typically in 
the range 1.27 to 37. 

( c )  Effect of velocity sensitivity of cold wires on temperature statistics. For the present 
experimental conditions, the velocity sensitivity for a0.63 pm cold wire of length x 37 
was approximately "C s/m and 82, was underestimated by about 0.15%. A 
calculation, similar to that of Wyngaard (1971 b), indicated that the contribution to 
the measured skewness of 0, 1, due to the velocity sensitivity of the cold wire, is about 
4.5 x This estimate is negligible in comparison with the measured skewness 
(table 2) which is of order one. 

Two important checks of the accuracy of high-order moments of derivatives or 
structure functions relate to the adequacy of integration times and the convergence 
of the tails of the p.d.f.s (table 1 ) .  For the present measurements, the duration of 
the digital records was in the range 60-120 s. Running moments of derivatives of u1 
and 0 were examined to estimate the times required for these moments to converge 
to within & 5 % of their final values. For n = 4, the highest order considered here, 
these times were comfortably smaller than the total record durations. Approximate 
convergence timesforOfl, ef2, u:, a n d G  were 30 % ,50 % ,40 % and 70 yo respectively 
of the total record duration. 

P.d.f.s of ul, 1, ul,  2, 0, and 0, are shown in figure 1 on a semi-log plot to emphasize 
the tails of the p.d.f. p .  The notation is such that, for example, 

--- 

co 

J-co P(ey1) d r  = 1, 

where y represents values in probability space assumed by the physical variable 0, 
and the asterisk means that 0,1 is centred and normalized by its r.m.8. value. The 
p.d.f.s for ul, and 0* were formed for A$2 x 5 ,  a separation which is large enough 
to avoid the systematic calibration errors (e.g. Mestayer & Chambaud 1979) but not 
sufficiently small to ignore the effect of spectral attenuation at  large wavenumbers 
(e.g. Wyngaard 1969; Browne et al. 1983~) .  A correction for this latter effect will be 
considered later in this section. The p.d.f.s of temperature derivatives peak near y = 0 
and spread to larger values of IyI than velocity-derivative p.d.f.s.t There is no 
significant difference between p.d.f.s of streamwise and lateral derivatives, for either 
velocity or temperature. The uncertainty of the magnitude of p at large values of 
I y 1 is indicated in figure 1 by error bars. To check convergence of the tails, integrands 
ynp were plotted in terms of y .  We limit ourselves to showing only distributions for 
n = 4, the highest order considered. While the integrands in figure 2 show satisfactory 
closure, this closure is better for positive than negative values of y ,  in the case of ul,  
or 0,  2. Symmetry with respect to y = 0 of I yn I p is better approximated by the p.d.f.s 
of the x2 than the x1 derivatives. Satisfactory closure of the integrands corresponding 
to second-order derivatives, with respect to xl, of velocity and temperature is 
demonstrated in figure 3. These derivatives appear in the budgets (54) for vorticity 
and temperature dissipation. 

Similar differences can be observed in Anselmet's (1983) measured p.d.f.s of temperature- 
structure functions of u1 and 0 on the axis of a jet. 
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FIGURE 1. Probability density functions of velocity and temperature derivatives at xI = 0. 
Upper curves: -, p(8:l); --, ~ ( 8 : ~ ) .  Lower curves: -, p(t&); --, p ( ~ : , ~ ) .  
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Y 
FIGURE 2. Integrands corresponding to fourth-order moments of velocity and temperature 
derivatives at xz = 0 : - - - , YPP(u: ; - -, Y'P(u:, 2) ; - - - -, r*~(@:~); -, y p ( ~ : ~ ) .  
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FIGURE 3. Integrands corresponding to second-order moments of second derivatives of velocity 
and~temperaturederivatives at x2  = 0. -, y2p(u: ll); - -, y2p(t9:llj. 

3. Moments of velocity and temperature derivatives 
Moments, up to order 4, of derivatives of ul and O are presented in table 2 at the 

centreline (x2 = 0) of the jet. Also shown in table 2 are the corresponding moments 
measured by Tavoularis & Corrsin (1981) in a significantly different flow, a quwi- 
homogeneous turbulent shear flow with constant values of ul,2 and T 2 ,  but for 
slightly larger values of R, and Pe than in the present flow. Before comparing the 
results in the two flows, it is appropriate to point out how derivatives with respect 
to x2 were corrected for the effect of separation Ax2 between the wires. For example, 
to determine the flatness factor Fe,z ( = Of,/(Of2)2) the correct or non-attenuated digital 
values of e f e  and (s), were first obtained prior to forming their ratio. To determine 
ez2, Antonia et al. (1984) extrapolated measurements of w, obtained for 
kt2 in the range 5-11, to Ag2 = 0. A linear extrapolation was used as a first 
approximation ; a more appropriate ex trapolation, based on theoretical calculations 
developed by Wyngaard (1969) and Browne et al. (1983a), requires a knowledge of 
the correct spectrum of velocity or temperature and was not implemented. The 
procedure adopted by Antonia et al. (1984) was followed here for e f e ,  w shown in 
figure 4. The corrected value of Fe,z, shown as a solid line in figure 4, is 13 % smaller 
than the approximately constant values of the ratio (AO/AZ,)~/((AO/A~,)~) over the 
range Ag2 5 5. All normalized moments (including correlations between different 
derivatives) in table 2, which include 8,z or u ~ , ~ ,  were corrected using a similar 
procedure to that adopted for correcting FO,,. 

Tavoularis t Corrsin (1981) measured AB/Ax2 using parallel wires of lengths 2.267 
and 4.527, the derivative 0,2 being obtained by extrapolating to Mz = 0 values 
corresponding to separations in the range 3.4 5 A$., 5 11.3. Data corresponding to 
values of Ag2 as small as 3.4, the minimum separation considered in the experiment, 
were included in the extrapolation but details of the extrapolation are not given in 
the paper. Measurements of Aul/Ax2 were made of wires of length 77 and a separation 

_ -  
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RA 
Pe 

Tavoularis & 
Present Corrsin 

x* = 0 value shear flow) 
(plane jet) Isotropic (quasi-homogeneous 

k: 160 
94 

1.8 1 2.2 
-0.04 0 0.62 
-0.43 -0.44t -0.42 

4.9 - 7.3 
5.8 - 6.5 
0.23 0 -0.44 

k: 260 
118 

- 
- 

2 1 1.82 
X O  0 1.1 
-0.85 0 -0.95 
12.5 - 11.0 

15.0 

so, t 
so. I 

Fen 1 

- Fo, 1 16.1 
q q / , / ( q t  -0.13 0 -0.48 

t From isotropic vorticity budget, (4). 

TABLE 2. Comparison of moments of velocity and temperature derivatives 
with data of Tavoularis & Corrsin (1981) 

15 

FIC+URE 4. Dependence of separation A2z of normalized and non-normalized fourth-order moments 
of ( A t ' / h J  at zg = 0. 0, - m 4 / ( B h ; ) Z  [measured]; --, linear extrapolation to M2 = o of 
measurements for 2 5. 0, [measured]; -, Fo,a derived from extra- 
polations and -a. 
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M2 x 2.8. These data were corrected for wire-length effects but the authors do not 
indicate whether they were corrected for the separation between wires. 

The comparison in table 2 indicates points of agreement but also several 'apparent ' 
differences between moments in the two flows. Directional analogies, noted by 
Tavoularis & Corrsin, between the fine structures of velocity and temperature, also 
apply to the present data. For example, the inequalities (q > 2u:, l;t 6f2 > efl) are 
of the same order in these two flows.$. Allowing for the small differences in RA and 
Pe, there is reasonable agreement -- in the case of the skewness S,, = u!, ?/(u:, l)t and 
So I and flatness factors F,,., = u:, J(u; ,  1)2 and Fo,,. The ratio $,,,,!Fo,* is about the 
same ( x  1.3) in both flows, compared with an isotropic value of unity. The standard 
deviation associated with the present value of Sul, was calculated to be f 0.017 using 
ten separate estimates of the skewness. For So,,, Fo,,, F,,,, the standard deviations 
were f0.038, f0.61 and f0.095 respectively. The major differences in table 2 occur 
in quantities involving ul, or 6,2 where they are raised to an odd power. The present 
nearly zero values for S,, I and So reflect the symmetry constraint on the centreline. 
This constraint also requires that'the correlations ul, ul, and 6, 6, are zero.§ Their 
measured values are not quite zero, the departure from zero being more significant 

and 6, 6, ,J(P1$ (%)t, due to the effect of Ax2, are k0.04 and f0.05 respectively. 
We do not have an explanation for the non-zero value of ul, ul, ; although the fixed 
wire was correctly located at the centreline, the moving wire was traversed in only 
the positive x2 direction. Unfortunately, the hot-wire pair was not traversed across 
the jet. 

It may be argued that Tavoularis & Corrsin's non-zero values of moments which 
involve odd powers of xl, and 6, reflect the non-zero magnitudes of mean-velocity 
and -temperature gradients. Tavoularis & Corrsin explained the signs of their observed 
values of S,,, and So with the use of a mixing-length-type model. Specifically, they 
suggested 

(1) 

- -  

- _ _  

in the case of u1 u1 than 6, 6, 2. Estimated uncertainties in ul, ul, J(G)a 1 2  (ul, 2)t -- 

sgns,,, * = sgn Ul, 2 

and sgn so, = sgn U1, sgn T 2 .  (2) 

The skewness So has an opposite sign to So, ,, Sreenivasan & Tavoularis (1980) having 

(3) 
earlier shown tliat sgnSo*, = -sgnU1,, sgnT,.fi 

Tavoularis & Corrsin indicated that (2) is compatible with the boundary-layer data 
of Sreenivasan, Antonia & Danh (1977). Further, the magnitude of So I is nearly the 
same in these two flows although the measurements of Sreenivasan et aZ. showed little 
variation of So I in the logarithmic region, across which there are significant variations 
in ol,2 (40-1'60 s-l) and T 2  (70-280 "C rn-l). In Tavoularis & Corrsin's flow, 
Ul, = 46.8 s-l and = 9.5 "C m-l. 

t Anisotropy is also reflected by the inequality between z, and 2z, but, in this caae, published 
(e.g. measurements in the nearly self-preserving region of a plane jet indicate that 3, c 2$, 

Gutmark & Wygnanski 1976; Everitt & Robins 1978; Antonia et al. 1983~) .  
$ Similar inequalities have also been observed by Verollet (1977) in a boundary layer. 
f The present magnitude of m/(efI)i (%)+ shown in figure 2 is smaller than that ( x 0.3) 

reported by Antonia & Browne (1983) in the same flow. This latter value was not corrected for 
the effect of Ax,. 

7 Budwig, Tavoularis & Corrsin (1985) have shown that the mean shear is not necessary for the 
development of a non-zero temperature-gradient skewness. They concluded that sgn So,, = sgn T *, 
with i = 1. 2 or 3. 
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Tavoularis & Corrsin estimated that ul, ui, 2 / ( c ) i  (G)i was about -0.44, using 
isocorrelation contours obtained by Harris, Graham & Corrsin (1977) in essentially 
the same flow but in the absence of a temperature gradient. Earlier measurements 
(Champagne, Harris & Corrsin 1970) in the same type of flow but with a smaller 
mean-velocity gradient (r., x 12.9 s-l) yielded a value of -0.21. These results tend 
to imply that, at least in this flow, the effect of velocity gradient may influence 
statistics of the small-scale structure and suggested a need for a systematic study of 
the effects of Ul, and 
and T 2  may not be as important but this speculation needs to be confirmed. 
Differences that exist between the fine-structure statistics in the present flow and in 
the quasi-homogeneous shear flow may be, at  least in part, related to differences in 
the large structure. The present non-homogeneous shear flow is characterized by the 
presence of a quasi-organized large-scale motion. There is no evidence for such 
organization in the quasi-homogeneous shear flow of Tavoularis & Corrsin. 

On the basis of the relatively large values, measured in their flow, for 
6, 6, 2/(6, 1)1 (6, 2)9 and ul, ul, 2 / ( q ) z  (ul, 2 ) a  (see table 2), Tavoularis & Corrsin specu- 
lated that there is a high probability that large values of (ul, 1, ul, 2) and/or (6, 1, 6, 2) 

occursimultaneously. Although the present valuesfor the above correlation coefficients 
are small at x2 = 0 (they should be zero by symmetry), joint probability-density 
functions (j.p.d.f.s) of (u:, 1, u:, 2) or (Ofl, 6f2) at x2 = 0 (figure 5 b )  clearly indicate that 
large values of one of the quantities in these pairs is large when the other quantity 
is small. The notation used for figure 5 is consistent with that in figure 1,  with y and 
6 indicating values in probability space taken by the physical variables. While the 
information shown in figure 5(b)  was only available at x2 = 0, the j.p.d.f. of (6:,, 6f3) 
was measured in the range 0 6 z2/L,  6 1. The results were similar to those of 
figure 5 ( b ) ,  viz large values of OT1 corresponded to small values of OT3 and vice versa. 
An important consequence of these results is that the instantaneous behaviour of e0 
cannot be inferred solely on the basis of 6fl. Although there is considerable similarity 
between the j.p.d.f.s for squared velocity and temperature derivatives in figure 5 (b), 
there is less similarity between the j.p.d.f.s of the non-squared derivatives shown in 
figure 5 (a) .  The j.p.d.f. contours of (ul, 1, ul, 2) are nearly elliptical and tilted whereas 
the contours for (6, 1, 6, resemble parallelograms and are more nearly symmetrical 
with respect to either axis. 

2. In  a non-homogeneous shear flow, the influence of Ul, 

2 1 a 1  1 7 1  

4. Isotropic budgets of vorticity and of ( a 6 / a ~ ) ~  
It is of interest to consider whether the isotropic forms of the equations for the 

mean-square vorticity and average temperature dissipation are satisfied in the 
present flow. For stationary isotropic turbulence at large Reynolds numbers, the 
mean-square-vorticity budget may be written as (e.g. Batchelor & Townsend 1947 ; 

(4) 
Champagne 1978) q = - 2 v s . t  

Measurements at x2 = 0 of < and yielded an average value for the ratio of 
left and right sides in (4) of 0.97 (&0.04), the uncertainty representing an r.m.8. error 
estimated from 12 separate experiments. From measurements by Wyngaard & 
Tennekes (1970) of u:,ll obtained from the spectrum of ul, and of the skewness of 
ul, 1, the ratio of left and right sides of (4) is 0.93 ( f0.07). These measurements were 
in a curved mixing layer with R, x 200. 

t The isotropic form of the sixth-order tensor required to obtain (4) was derived by Wyngaard 
and is given in the appendix of Champagne’s (1978) paper. 

- 
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FIQIJRE 5. Contours of joint probability density functions between streamwise and lateral 
derivatives (and their squared values) of velocity or temperature at 2, = 0. (a) p ( u t  u&) (left) 
and p(O:l, ~9:~) (right). Magnitudes of outer-to-inner contours: O.OOO1, 0.0005, 0.001, 0.005, 0.01, 
0.05,O.i. ( b ) p ( ~ : : ~ ,  u::,) (left) andp(Ot:, 0::) (right). Magnitudes of outer-to-inner contours: O.OOO1, 
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0. 

The transport equation for the mean-square temperature gradient can be approx- 
imated, in large-Reynolds-number isotropic turbulence, by (e.g. Wyngaard 197 1 b) 

ul, Of l  = -$G. 
The average ratio of measured values of left and right sides of (5) is 0.95 (f0.05). 

The reasonable agreement between experiment and the isotropic relations (4) and 
( 5 )  may be thought of as surprising, given the moderately small value of R, in the 
present flow. Some insight into a possible explanation for this agreement may be 
gained by considering the spectral forms of relations (4) and (5).  The spectral 
equivalent of (4) may be written as 
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kl 

FIQIJRE 6. Production and dissipation terms in the isotropic form of the turbulent-vorticity equation 
at x2 = 0. -, dissipation k: ; - - - , production (1 16)-l Co,,, , ,:, ,. 

where k, is the one-dimensional wavenumber and the cospectrum Cot between u,, , 
and u?,, is normalized such that the integral on the left side of (6) is equal to the 
skewness of ul, 1. The Kolmogorov normalized spectrum $,, is defined such that 

where U ,  E (I%)! is the Kolmogorov velocity scale. At  z2 = 0, U ,  z 0.11 m/s. The 
spectral equivalent of ( 5 )  is 

where Pr is the molecular Prandtl number and the cospectrum between u,, and Ofl 
is normalized so that the integral on the left side of (7) is equal to the correlation 
coefficient u,, , ef,/[(u:, ,):TI. The temperature spectrum is normalized so that 

~- 

where 0, = ( Z e ~ / U , $  is the Kolmogorov temperature scale. At z2 = 0, OK x 0.17 “C. 
This agreement is expected since it represents only a consistency check of the data. 
The non-zero values of 6 $,, (figure 6) and E: $6 (figure 7) suggest that that the actual 

t The interpretation of a cospectrum involving squared quantities is similar to that for 
non-squared quantities. For example, Co,,, ,,t, ,(k1) represents the correlation coefficient over a 
narrow wavenumber band centred on i1, of the quantities ul, and u:, 1. 

FLY 163 13 
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FIGURE 7. Production and dissipation terms in the isotropic form of the temperature-dissipation 
equation at z2 = 0. -, dissipation Lt #e; - - - , production (14.5)-’ Co,,, enl. 

values of the ratios of left and right sides of (6) and (7)  would be slightly smaller (but 
by no more than 10%) than those given above. 

Distributions corresponding to left and right sides of (6) and (7 )  are shown in 
figures 6 and 8t respectively. The ratios of left and right sides of (6) and (7) are equal 
to 0.98 and 0.94 respectively, in reasonable agreement with the previous corresponding 
ratios in (4) and ( 5 ) .  The separation between the locations of the peaks in cospectra 
and dissipation is slightly larger for temperature (figure 7) than velocity (figure 6). 
It is noticeable, however, that the cospectrum between ul,l and ST1 decays more 
rapidly with wavenumber than that bctween ul, and utr 1. For 6 > 0.3 the area under 
the cospectrum in figure 7 represents only 13 Yo of the total area whilst the area under 
the dissipation represents 82 % of thc total area. Corresponding values for figure 6 
are 36 % and 70 %. A possible implication of figures 6 and 7 is that local isotropy is 
likely to be satisfied over a larger wavenumber range for temperature than for 
velocity since the cospectrum, which may be identified with the production term and 
a possible source of anisotropy, extends to larger wavenumbers for velocity than for 
temperature. This implication is consistent with the observation (Antonia et al. 1983~) 
that, in the present flow, Kolmogorov’s (1941 b )  equation for the velocity structure 
functions is satisfied only for separations that fall inside the viscous range, whereas 
Yaglom’s (1949) equation for temperibture structure functions is satisfied for separ- 
ations which extend up to the beginning of the inertial range. The inertial ranges, 
as inferred from second-order velocity and temperature structure functions, were 
estimated (Antonia et al. 1 9 8 3 ~ )  to be 30 6 r / p  5 70 and 20 5 r / p  5 50 respectively. 

t A slightly different form of the spectral contributions to the 3 budget was plotted in the paper 
by Antonia t Browne (1983), where a more rletailed discussion of the dissipation spectrum is given. 
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FIQURE 8. Average amplitude and frequency of temperature fronts. a / (p ) i :  0, using (9); A, using 
conditional averages of e.fl LJU,: 0,  using (8) and (9); --, Antonia et al. (19833), Cervantes 
& Goldschmidt (1981). 

5. Effect of large-scale motion on fine-scale statistics 
The non-zero skewness of the temperature derivative or of the non-zero moments 

of odd-order temperature-structure functions need not be interpreted as indicating 
that the fine-scale temperature field is anisotropic (e.g. Sreenivasan et al. 1979; 
Antonia & Van Atta  1978; Subramanian & Antonia 1982). It is more reasonable to 
attribute the non-zero skewness to the anisotropy of the large-scale motion. Taylor 
(1 958) was first to notice ramp-like temperature signatures in the atmospheric surface 
layer which were spatially coherent. Gibson et al. (1977) commented that such 
signatures appear to be a characteristic feature of scalar fields mixed by sheared' 
turbulence. A physical interpretation of the ramp-like signatures in the context of 
the present flow is attempted in the next section, where the spatial organization of 
the flow is considered. It is of interest, however, to ascertain the extent to which a 
simple ramp-like model for temperature is consistent with measurements of both 
temperature and velocity derivatives. 

Antonia & Van Atta  (1978) used a relatively crude model of the ramp (shown in 
figure 8) whereby t9 was assumed to be made up of a linear superposition of OR, a 
linear ramp of height a,  and of random fluctuations OT with a characteristic timescale 
smaller then that of 8,. With the assumption that (As), is statistically independent 
of (A&, AO representing the temperature increment O ( t  + T ) - O ( t ) ,  the average 
frequency fi of the ramps of structures is given by 

13-2 
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FIGURE 9. Conditional averages of ul, u2, 0 at x21L, = 0.66. 

for inertial-range values of 7.  The magnitude of a can be obtained from a knowledge 
of second-, third- and fifth-order structure functions of temperature. For the present 
flow, the equation for a is given by (Antonia & Van Atta 1978) 

a- l o w  = 0. (9) 

From measurements of with n = 2,3,5,  values of a andf, were obtained, using 
(9) and (8), at different values of x,. These values showed little variation over the range 
20 5 7u1/~ 5 80 which encompasses the inertial ranges for velocity and temperature. 
There is practically no variation of a/(a)i with x,, as shown in figure 8, this value 
comparing favourably with ramp amplitudes reported by Antonia & Van Atta (1978) 
for several non-homogeneous flows. 

Temperature fronts, or spatially coherent sudden increases in 0, were identified 
using the rake of eight cold wires mentioned under (iii) in $2. The fronts were detected 
only when the increases could be visually identified on all temperature traces. 
Ensemble averages of 0, u1 and u2 wore formed using the relation 

where B stands for either 0, u1 or u,, t ,  (i = 1, . . . , N) are the detection instants, N is 
the total number of detections (typically 150-250) and the time T~ is measured from 
the instant of identification. Distributions of (u,), (u,), ( 0 )  at one value of x2 are 
shown in figure 9 in terms of xi, defined so that xi = - T ~  U, is an appropriate 
convection velocity of the large structure. A value of 0.6517, was used for U,, on 
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the basis of measurements presented in Antonia et al. (1983b). The origin xi E 0 can 
be identified with x, = 40d, and positive and negative values of xi correspond 
respectively to locations downstream and upstream of the front. Identifying the 
maximum amplitude of (0) with the quantity a, the agreement between this value 
and that inferred from (9) is good over the complete range of x2 (figure 8). The average 
frequency fl, as obtained, from various methods, by Cervantes & Goldschmidt (1981) 
and Antonia et al. (1983b), is approximately 0.11 U,,/L,. Equation ( 8 )  yields a value 
that is only 18 yo larger than this estimate. The crude ramp model in figure 8 is at 
best only a gross simplification, the ensemble averages in figure 9 providing some proof 
of this. Temperature ramps vary in shape and duration and, as noted by Mestayer 
(1982), they need not occur contiguously, tending at times to overlap and occasionally 
to disappear. Clearly the degree of organization and hence of these difficulties will 
vary from flow to flow. In spite of these drawbacks, it  is difficult to ignore the good 
agreement (figure 8) bytween the ramp-model predictions and observations. 

A more realistic attempt at modelling the ramp would be to use the measured 
conditional averages of (9). Such an approach was adopted by Subramanian & 
Antonia (1982); their calculations of S, were in reasonable agreement with 
measurements in a turbulent boundary layer. The approach followed below is 
essentially that of Subramanian & Antonia with one modification: i t  is simpler and 
sufficient to concentrate only on the sharp increase in (0) near 71 = 0 or xi = 0, since 
the other parts of (0) make a negligible contribution to Se,l. 

With ensemble averaging defined by (lo), the fluctuation /3 (note $ = 0) may be 
written as 

B = (B>+B, 
where (8) and represent the coherent and random components of 8. It follows 
from (l l) ,  after differentiating with respect to xl, raising to the appropriate power 
and averaging, that 

C=(B>T1+0", (12) 

If el is isotropic, 
temperature, (13) can be approximated by 

and ( ~ 5 , ~ ~ ) ~  should be negligible. If we first concentrate on 

In (12) and (13), correlations between coherent and random parts of B,l have been 
ignored. It is reasonable to assume that the major contribution from the coherent 
part is confined to the region (e.g. figure 9) associated with the sharp increase in (0) 
and that the rate of increase of (0) is constant. This rate is given by a/( U,  7J, where 
72 is the duration of this increase. The skewness So can then be approximated by 

An estimate of (e'1)2 can be obtained from (12) using measured values of % and (0)fl. 
This latter quantity was determined by first differentiating the ensemble average with 
respect to xi (strictly with respect to time) and interpreting the overbar as an average 
over a distance f;'U,. The quantity [l +e',)"/(e)z,] varied between about 10 at 
x2 = 0 to about 4 at x2 = L,; the inverse (e)fl/T bf this ratio is shown in table 3. 
A direct estimate of U,72 can be made from figure 9. However, since the sudden 
increase in ( 0 )  is likely to be degraded by the jitter in arrival times of fronts, a more 
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-- ~- -~ ~- -~ 
X e / L ,  <.l>fl/.I, I <uz)Tl/u:,1 <QTlleal <u1>;1/u:, 1 <uz>:,/u:. 1 <e>:llTl 
0 1.5 x 1.1 x 10-2 0.11 6.5 x 10-3 -t 0.46 
0.17 1.6 x 8.1 x 10-3 0.09 6.2 x 10-3 3.4 x 10-2 0.28 
0.33 1.6 x lo-* 8.8 x 0.11 7.2 x 10-3 6.0 x 0.36 
0.5 2.1 x 10-2 1.6 x 0.16 1.1 x 10-2 2.0 x 10-2 0.44 
0.67 1.7 x 10-2 1.2 x 10-2 0.14 1.0 x 10-2 3.9 x 10-2 0.36 
0.83 2.0 x 1.5 x 0.21 1.5 x 2.4 x 0.55 
1 .o 2.2 x 10-2 1.6 x 0.24 1.4 x 2.7 x 0.59 

~ t Note ui, is zero at x2/L, = 0. 

TABLE 3. Estimates of contributions from coherent motion to and 
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FIGURE 10. Comparison between measured and calculated skewness of the streamwise derivatives 
of temperature. Open and closed symbols respectively refer to measurement and calculation, 
equation (15). 

appropriate estimate of U,r2 was obtained by first determining the maximum slope 
for each front, a t  or near xi = 0, and then averaging over the total number N of fronts. 
A similar procedure was used to obtain the average amplitude. Values of r2 Uo/Lu 
increased slightly from about 0.03 at x2 = 0 to 0.04 at x2 = L,. The trend of 
calculated with (15) correctly reflects the behaviour of the measurements (figure 10). 

Relatively direct estimates of possible contributions of the large-scale coherent 
motion to p”1 and p”1 are given by the ratios of the first terms on the right sides of 
(12) and (13j to  the Lorresponding tcrms on the left sides of these equations. These 
ratios, shown in table 3, indicate that the contribution from the coherent motion is 
negligible for velocity derivatives but important for temperature derivatives, 
especially81,. The values indicated in the last column of table 3 only go about halfway 
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towards verifying (14) but, in view of the assumptions made in deriving (14) and the 
inevitable degradation of conditional averages with increasing distance from xi = 0, 
the assumption that Ofl satisfies isotropy is not unreasonable. Whilst the contribution 
from the coherent motion to is small, the skewness of u,, , is negligibly small, 
increasing slightly from zero at x, = 0 to about 0.1 at x, = L,. Nonetheless, these 
results are consistent with the assumption that ui, satisfies isotropy. It is noteworthy 
that the contribution of the coherent motion to the skewness of ul, is negligible. This 
result is of some importance since it leaves unaffected the observation, in $4, that 
the skewness of ul, is reasonably approximated by the isotropic form of the vorticity 
budget. Van Atta (19773) showed that the temperature-ramp model did not 
contribute to the correlation between the velocity-structure function and the squared 
temperature-structure function. This would leave unaffected the observation in $4 
that the correlation between ul, and Ofl is correctly accounted for by the isotropic 
form of the temperature-dissipation budget. 

6. Conditional averages of temperature dissipation 
An attempt was made by Antonia et al. (1986) to delineate the topology of the 

large-scale motion in the present flow. Using measurements of (u,) and (u,) obtained 
with the rake [arrangement (iv), $21 at different values of x, and from a knowledge 
of the position of the front in the (xi, xJ-plane, streamline patterns associated with 
this motion were obtained, in the plane of main shear, with respect to an observer 
travelling with the convection velocity U, of the motion. The emerging patterns 
showed up the presence of adjacent vortical structures on the same side of the 
centreline connected by a diverging separatrix, identifiable with the temperature 
front. These structures are asymmetric with respect to the centreline, the arrangement 
being in agreement with that suggested by Oler & Goldschmidt (1981) and Gold- 
Schmidt, Moalemmi & Oler (1983) on the basis of spacetime correlations and smoke 
visualization in the self-preserving region of a plane jet. 

Since the temperature front is associated with large streamwise gradients of 
velocity and especially temperature (figure 9) it would be natural to expect large 
values of ui, , and Of, to occur near the front. Apart from testing this expectation, 
an attempt is made in this section to map out the spatial distributions of Ofl, Ot3  and 
of an approximation to €8, the instantaneous dissipation of p. 

Signals proportional to 8f1, Of3 and to an approximation of €8 were digitized with 
three other temperature signals from the spanwise rake [arrangement (iii), $21. Not 
all the temperature signals of the rake could be digitized because of the maximum- 
sampling-frequency limitation (about 56 kHz) of the data-acquisition system. The 
sampling frequency used at each x, was in fact larger than twice the Kolmogorov 
frequency; the appropriate cut-off frequency for signals proportional to 6f1, Of3 and 
€8 was determined by considering the signal-to-noise ratios of these quantities. The 
cutoff frequency which was used was larger than the Kolmogorov frequency by a 
factor in the range 1.3-2.6 depending on 2,. One of the three &signals that were 
digitized was the output from one of the parallel cold wires at the centre (x, x 0) 
of the rake while the other two were provided by wires located at x, x f 0 . 3 L U .  The 
approximation, here referred to as €8 for simplicity, to the instantaneous temperature 
dissipation, was constructed using a combination of Ofl and Of, (the justification for 
and details of this construction are given in Anselmet & Antonia (1985)). 

Observations of the three temperature traces displayed simultaneously with Of,, 
Of3 and €8 traces generally indicated good coincidence between the occurrence of fronts 
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and activity in Of,,  Of, or ee. There was also, however, strong activity in these 
quantities immediately following the detection of a front. This was especially evident 
near x2/Lu = 1. By contrast, the period preceding the detection showed relatively 
little activity. Periods of strong activity in Ofl ,  Of, and ee also occurred when 
temperature fronts were absent, but this activity is unlikely to be spatially coherent. 
Similar observations were made by Jacquin (1983) on the basis of traces of 8 and Of1 
obtained in a turbulent boundary layer a t  only one point in space. 

To quantify the previous observations, conditional averages of Ofl ,  Of3 and ce were 
formed at every value of x2, using (1). p now representing Ofl or Of, or 4. Resulting 
distributions a t  x2 = 0 show (figure 1 1 )  that most of the activity is concentrated in 
a narrow region near xi = 0, the largest peaks occurring at negative values of x;/L,. 
Conditional averages obtained a t  all values of x2 were subsequently used to form 
contours of (Of1),  (Of,) and (ee)  in the (xi, x,)-plane, using a procedure similar to 
that outlined at the beginning of this section. These three sets of contours were 
qualitatively sidilar, as might be inferred from figure 11, and therefore only ( B J  
contours are shown in figure 12. Some smoothing was applied in figure 12, whereas 
the distributions in figure 11 were unsmoothed. The contours of (eo) are clustered 
around the temperature front, which is indicated by the broken curve in figure 12. 
Approximate streamlines, as determined (Antonia et al. 1986) for an observer 
travelling downstream (right to left in figure 12) with a velocity U,, have been added 
to figure 12 as an aid in locating the zone of large dissipation in relation to the coherent 
vortical structures. The largest values of (ce) occur away from the centreline. Also, 
the contours are stretched towards larger negative values of x;/L, near x2/L, = 1 .  
Both these trends are consistent with the observation (Antonia et al. 1983a) that the 
largest values of the average production and dissipation of the temperature variance 
occur in this region of the flow. 

The similarity between <Oz1) and (@,) in figure 11 might suggest that, with high 
probability, large temperature gradients, in the x1 and x3 directions, occur 
simultaneously. Such a trend would be at  variance, however, with that displayed in 
figure 5 by the conventional j.p.d.f. of 021 and Of,. It seemed therefore of some 
importance to investigate possible modific'ations to this trend by focusing only on 
zones of large dissipation. A conditional j.p.d.f. was obtained using only N portions 
of the digital record, each centred about the instant of detection of the front and 
extending over the range -0.4 < x ; / L ,  < 0.4. There is close similarity between 
conventional and conditional j.p.d.f. contours in figure 13, indicating that, even in 
the immediate vicinity of the front, large excursions of Ofl  and Of, do not, on average, 
occur simultaneously. On the contrary, large excursions of Of, occur, on average, when 
Of, is quiescent and vice versa. 

It seems appropriate to comment on the likely three-dimensional configuration of 
zones of large dissipation. The present definition of the temperature front requires 
that temperature jumps are simultaneously detected over a distance, in the x3 
direction, of about L,. Conditional averages of temperature, obtained over this 
distance, were identical, viz ( O ) ,  , = 0,  implying homogeneity in the z3 direction, a t  
least over a distance L,. It seems reasonable to assume that there will be a large 
concentration of (Of1) in the (xi, 2,)-plane aligned with the direction of the front. In 
view of the limited evidence availablc, it would be difficult to infer with confidence 
the distribution of (Of,} in the same plane. Speculatively, one possibility is that the 
region of large dissipation is a sheet of varying thickness which extends by an amount 
of order L, in either the shear or spanwise directions and is aligned with the 
temperature front. We have noted that contours of the conditional rate of strain 
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FIGURE 11 .  Conditional averages of Oa,, O&3 and ce at x, = 0. 

FIGURE 12. Contours of conditional averages of the temperature dissipation ce. -, outer-to-inner 
contours of ((ce) L,/U, q) x lo3: 2.6,5.2,7.8,10.4. The temperature front is indicated by the heavy 
broken line. - - -, approximate streamlines relative to an observer travelling from right to left 
with convection velocity of large structures. 
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FIQURE 13. Conventional and conditional joint probability density functions between Ozl and Bz3 
at z2 = 0. Magnitudes of outer-to-inner contours: 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5. 

((u,), , + (u,), 2 )  have a large concentration in the direction of the front so that the 
high-dissipation zone should be approximately aligned with the direction of the 
principal rate of strain. The temperature front may be instantaneously curved or 
inclined to the x3 direction so that large values of O:, and Or3 need not occur 
simultaneously. Another, perhaps more likely, possibility is that zones of large 
dissipation are circular rods which are aligned, on average, with the direction of the 
front in the (xi, 2,)-plane. The cross-sectional dimensions of the rods, their spanwise 
spacing and their precise relationship with the front are matters that  require further 
investigation. It is possible that a study along the lines outlined by Kuo & Corrsin 
(1972) may be useful in explicitly assessing the geometry of the fine structure. The 
ramp model used in the previous section represents, no doubt, a gross simplification 
of the physics. That i t  yields reasonable results for SB,,  underlines the importance 
of the sudden change in temperature which is identifiable with the temperature front 
or the bounding surfaces of the large eddies. Although the assumed two-dimensionality 
of the ramp model receives partial support from observations of the front, the likely 
concentration of the dissipation in relatively narrow regions aligned with the front 
is not taken into account by the motlcl. 

7. Concluding comments 
Various isotropy tests have been applied to  data at moderate values of Reynolds 

and PBclet numbers. The isotropic forms of the vorticity and temperature-dissipation 
equations are satisfied approximately. Antonia et al. (1983~) found that, in the 
present flow, measured structure functions of velocity and temperature are in close 
agreement with isotropic calculations for these quantities over separations extending 
from the viscous to  the inertial ranges. Reasonable agreement was found by Antonia 
et al. (1984, 1985) between measured spectra of velocity and temperature derivatives 
and calculations based on isotropy a t  sufficiently large wavenumbers. All the previous 
evidence suggests that  both velocity and temperature fine-scale fields are isotropic. 
It would be clearly be useful to  extend this conclusion to a wider range of turbulent 
Reynolds and PQclet numbers. 

The non-zero skewness of the streaniwise derivative of temperature and the non-zero 
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odd-order moments of the temperature structure function are apparently strong 
indicators of anisotropy. However, the measured odd-order temperature structure 
functions are consistent, in the context of local isotropy, with a crude ramp model 
of the temperature signature of the large-scale motion. The average amplitude and 
frequency of this signature are in good agreement with observations. A more realistic 
decomposition of temperature into anisotropic coherent and isotropic random 
components leads to an encouraging agreement between calculation and measurement 
of the temperature-derivative skewness. When the coherent component is mathem- 
atically identified with conditional averages obtained from information at several 
points in space, this component is shown to make a significant contribution to the 
skewness of the temperature derivative but a negligible contribution to the velocity- 
derivative skewness. The last two results are consistent with local isotropy. 

Isotropic relations between mean-square derivatives with respect to different 
spatial directions are satisfied by neither temperature nor velocity. To our knowledge, 
there is no firm indication that this departure from isotropy decreases with increasing 
Reynolds number. It is important that this departure is taken into account both 
experimentally and in computational models. A likely source of this anisotropy may 
be the major contribution to derivatives in either lateral or spanwise directions from 
the relatively small wavenumber range of the spectrum. 

Conditional averages of squared derivatives of temperature in the streamwise and 
spanwise directions indicate relatively high amplitudes in a relatively narrow region 
immediately following the detection of the temperature front. There is therefore a 
large concentration of temperature dissipation which is approximately aligned with 
the temperature front in the direction of the principal rate of strain. The characteristic 
dimensions of this zone are not known precisely but we speculate that this zone 
extends much more significantly along the front than in either the streamwise or 
spanwise directions. 
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